If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+12c+5=0
a = 1; b = 12; c = +5;
Δ = b2-4ac
Δ = 122-4·1·5
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{31}}{2*1}=\frac{-12-2\sqrt{31}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{31}}{2*1}=\frac{-12+2\sqrt{31}}{2} $
| 2g+14+5g=8g+3+8 | | 3-x+7/3=-5 | | 5+19t-3=7t+77-3t | | 2g+145g=8g+3+8 | | -1+x/7=2 | | x-2(x+2)=-3 | | 2/3x=3/4x-3 | | X^2+y^2=65 | | 9x=5x+34 | | 13−0.5(2x−6)+2x=17 | | X^2+y2=65 | | -16x=37 | | (2c-8c+5)+(2c-8c-6=) | | 8+x/3=22 | | 9-(2x+16)=29-6x | | 1.8(3x−1)=17.64 | | -x+13=x-7 | | 3/4=14/d | | (20x)/(20+x)+x=75 | | 1/6(18x+24)=−14 | | 160x+1280=32x | | p^2+2p=9 | | 12w-24=3-6 | | 4-8x=7-9x | | x+2*x+7(2x+7+2x+7)-3=186 | | 5x-35+5x-26=4x+54 | | 3+x/5=7 | | (-4x)+7=X | | -5(r+7)=-73 | | 3+5q=9+2q | | X/y=17 | | (x-4)^3/2=16 |